Unique phonon modes of a CH3NH3PbBr3 hybrid perovskite film without the influence of defect structures: an attempt toward a novel THz-based application

Author:

Maeng Inhee,Lee SeungjunORCID,Tanaka Hiroshi,Yun Jung-Ho,Wang Shenghao,Nakamura MasakazuORCID,Kwon Young-KyunORCID,Jung Min-CherlORCID

Abstract

AbstractThe exploration of new physical properties for various THz-based applications, such as THz-wave sensing, modulation, and imaging devices, is a key challenge in the research on organic–inorganic hybrid perovskite materials. These THz-based applications require satisfactory, sensitive, and stable absorption properties with values between 0.5 and 3 THz. To achieve these properties, candidate materials should possess a purified structure that induces regular and fixed phonon modes without any defects or impurities. CH3NH3PbBr3, an organic–inorganic hybrid perovskite thin film produced by a sequential vacuum evaporation method on a flexible PET substrate, was investigated in this study. Although the thin film contains only molecular defects related to CH3NH2 incorporated into the perovskite structure, our THz-wave absorption measurement and first-principles simulation confirmed that these molecular defects do not influence the three phonon modes originating from the transverse vibration (0.8 THz), the longitudinal optical vibrations (1.4 THz) of the Pb–Br–Pb bonds, and the optical Br vibration (2.0 THz). After spin-casting an ultrathin PTAA polymer protective layer (5 nm) on the hybrid perovskite thin film, it was additionally observed that there was no significant effect on the phonon modes. Thus, this novel flexible organic–inorganic hybrid perovskite material is a potential candidate for THz-based applications.

Funder

MEXT | Japan Society for the Promotion of Science

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modelling and Simulation,Condensed Matter Physics,General Materials Science,Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3