Kirigami-processed cellulose nanofiber films for smart heat dissipation by convection

Author:

Uetani KojiroORCID,Kasuya Keitaro,Wang Jiahao,Huang Yintong,Watanabe Rikuya,Tsuneyasu Shota,Satoh Toshifumi,Koga HirotakaORCID,Nogi Masaya

Abstract

AbstractHeat dissipation has become increasingly important in electronics. Conventional convection cooling systems have significant material and dimensional constraints, and they have difficulty meeting the heat dissipation, miniaturization, and flexibility requirements of next-generation smart electronics. Here, we used kirigami (the traditional art of paper cutting) with a thermally conductive cellulose nanofiber film to propose a flexible cooling system through convective heat dissipation. By stretching the Amikazari (net decoration) pattern produced by kirigami and allowing air convection through its aperture at 3.0 m/s, the thermal resistance was reduced to approximately one-fifth of that without kirigami and convection. The kirigami apertures defined the outlet air velocity, resulting in a significant increase in the heat-transfer coefficient. Our kirigami heat dissipation concept enables the design of electronics using a variety of film materials as shape-variant cooling structures, which will inspire a wide range of thermal engineering and electronics applications.

Funder

Fuji Seal Foundation Nanotechnology Platform of MEXT

Japan Society for the Promotion of Science London

Cooperative Research Program of the “Network Joint Research Center for Materials and Devices”

Publisher

Springer Science and Business Media LLC

Subject

Condensed Matter Physics,General Materials Science,Modeling and Simulation,Condensed Matter Physics,General Materials Science,Modeling and Simulation

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3