Abstract
Abstract
The rational design of nanomaterials with distinct exposed facets is of great importance for improving the physicochemical properties of these materials and for the study of structure–activity relationships. This work describes the first synthesis of lanthanum titanate (La2Ti2O7, LTO) with dandelion-like nanostructures via the molten salt method. The lowest synthesis temperature of 700 °C is at least 200 °C lower than that required by other methods. The dandelion structure consists of well-crystallized LTO nanorods (NRs) with sizes of less than 100 nm in the radial direction and 300–500 nm in the axial direction, which is different from the widely accepted two-dimensional form. LaOCl microplates were formed as an intermediate substrate for LTO NR growth outwards to the basal surfaces of the LaOCl crystallites. DFT calculation results showed that the strong LiCl adsorption on the (100) surface led to distinct growth of the (100) and (020) planes, thus promoting the rod-like growth of LTO along the [010] axis. In addition, the photocatalytic performance of as-prepared LTO was evaluated by determining the degradation of rhodamine B. The results suggested that the as-prepared LTO could markedly enhance the photocatalytic activity as a result of the surface heterojunction of coexposed {100} and {002} facets in LTO NRs.
Publisher
Springer Science and Business Media LLC
Subject
Condensed Matter Physics,General Materials Science,Modeling and Simulation,Condensed Matter Physics,General Materials Science,Modeling and Simulation
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献