Abstract
AbstractMagnetic imaging using nitrogen-vacancy (NV) spins in diamonds is a powerful technique for acquiring quantitative information about sub-micron scale magnetic order. A major challenge for its application in the research on two-dimensional (2D) magnets is the positioning of the NV centers at a well-defined, nanoscale distance to the target material required for detecting the small magnetic fields generated by magnetic monolayers. Here, we develop a diamond “dry-transfer” technique akin to the state-of-the-art 2D-materials assembly methods and use it to place a diamond micro-membrane in direct contact with the 2D interlayer antiferromagnet CrSBr. We harness the resulting NV-sample proximity to spatially resolve the magnetic stray fields generated by the CrSBr, present only where the CrSBr thickness changes by an odd number of layers. From the magnetic stray field of a single uncompensated ferromagnetic layer in the CrSBr, we extract a monolayer magnetization of MCSB = 0.46(2) T, without the need for exfoliation of monolayer crystals or applying large external magnetic fields. The ability to deterministically place NV-ensemble sensors into contact with target materials and detect ferromagnetic monolayer magnetizations paves the way for quantitative analysis of a wide range of 2D magnets assembled on arbitrary target substrates.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献