Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling

Author:

Klein D. R.1ORCID,MacNeill D.1,Lado J. L.23ORCID,Soriano D.2ORCID,Navarro-Moratalla E.4,Watanabe K.5ORCID,Taniguchi T.5,Manni S.678,Canfield P.67ORCID,Fernández-Rossier J.2ORCID,Jarillo-Herrero P.1ORCID

Affiliation:

1. Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

2. QuantaLab, International Iberian Nanotechnology Laboratory, 4715-310 Braga, Portugal.

3. Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland.

4. Instituto de Ciencia Molecular, Universidad de Valencia, 46980 Paterna, Spain.

5. National Institute for Materials Science, Tsukuba, Japan.

6. Ames Laboratory, U.S. Department of Energy, Iowa State University, Ames, IA 50011, USA.

7. Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA.

8. Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai 400005, India.

Abstract

An intrinsic magnetic tunnel junction An electrical current running through two stacked magnetic layers is larger if their magnetizations point in the same direction than if they point in opposite directions. These so-called magnetic tunnel junctions, used in electronics, must be carefully engineered. Two groups now show that high magnetoresistance intrinsically occurs in samples of the layered material CrI 3 sandwiched between graphite contacts. By varying the number of layers in the samples, Klein et al. and Song et al. found that the electrical current running perpendicular to the layers was largest in high magnetic fields and smallest near zero field. This observation is consistent with adjacent layers naturally having opposite magnetizations, which align parallel to each other in high magnetic fields. Science , this issue p. 1218 , p. 1214

Funder

National Science Foundation

U.S. Department of Energy

Gordon and Betty Moore Foundation

Fundação para a Ciência e a Tecnologia

Japan Society for the Promotion of Science

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

Cited by 658 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3