Elimination of the internal electrostatic field in two-dimensional GaN-based semiconductors

Author:

Jia Yuping,Shi ZhimingORCID,Hou Wantong,Zang Hang,Jiang Ke,Chen Yang,Zhang Shanli,Qi Zhanbin,Wu Tong,Sun Xiaojuan,Li DabingORCID

Abstract

AbstractGaN-based semiconductors are promising materials for solid-state optoelectronic applications. However, the strong internal electrostatic field (IEF) along the [0001] direction is a serious problem that harms the efficiency of lighting devices based on GaN-based semiconductors due to the quantum confined Stark effect. Here we theoretically predict a method, reducing the dimensions from bulk to two-dimensional (2D) structures, to fundamentally remove the IEF. After thinning the materials to several nanometers, the wurtzite configuration (with strong IEF) spontaneously transform to the haeckelite (4 | 8) configuration (without IEF) due to the more stable neutral surface in the 4 | 8 configuration. Meanwhile, the 4 | 8 configuration maintain optoelectronic properties comparable to or even better than those of the wurtzite configuration. By carefully analyzing the interaction between 2D GaN and different types of substrates (SiC and graphene), we not only provide clear physical insights for experimental results but also address a “thickness-controlled” vdW epitaxy scheme to experimentally realize the 4 | 8 configuration. We believe that the 4 | 8 configuration without IEF is a prospective material for diverse optoelectronic applications. In addition, we propose a point of view in engineering the properties of GaN-based semiconductors.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3