Abstract
AbstractMemristors for neuromorphic computing have gained prominence over the years for implementing synapses and neurons due to their nano-scale footprint and reduced complexity. Several demonstrations show two-dimensional (2D) materials as a promising platform for the realization of transparent, flexible, ultra-thin memristive synapses. However, unsupervised learning in a spiking neural network (SNN) facilitated by linearity and symmetry in synaptic weight update has not been explored thoroughly using the 2D materials platform. Here, we demonstrate that graphene/MoS2/SiOx/Ni synapses exhibit ideal linearity and symmetry when subjected to identical input pulses, which is essential for their role in online training of neural networks. The linearity in weight update holds for a range of pulse width, amplitude and number of applied pulses. Our work illustrates that the mechanism of switching in MoS2-based synapses is through conductive filaments governed by Poole-Frenkel emission. We demonstrate that the graphene/MoS2/SiOx/Ni synapses, when integrated with a MoS2-based leaky integrate-and-fire neuron, can control the spiking of the neuron efficiently. This work establishes 2D MoS2 as a viable platform for all-memristive SNNs.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献