Exceptionally strong coupling of defect emission in hexagonal boron nitride to stacking sequences

Author:

Li SongORCID,Pershin AntonORCID,Li PeiORCID,Gali Adam

Abstract

AbstractVan der Waals structures present a unique opportunity for tailoring material interfaces and integrating photonic functionalities. By precisely manipulating the twist angle and stacking sequences, it is possible to elegantly tune and functionalize the electronic and optical properties of layered van der Waals structures. Among these materials, two-dimensional hexagonal boron nitride (hBN) stands out for its remarkable optical properties and wide band gap, making it a promising host for solid state single photon emitters at room temperature. Previous investigations have demonstrated the observation of bright single photon emission in hBN across a wide range of wavelengths. In this study, we unveil an application of van der Waals technology in modulating their spectral shapes and brightness by carefully controlling the stacking sequences and polytypes. Our theoretical analysis reveals remarkably large variations in the Huang-Rhys factors–an indicator of the interaction between a defect and its surrounding lattice–reaching up to a factor of 3.3 for the same defect in different stacking sequences. We provide insights into the underlying mechanism behind these variations, shedding light on the design principles necessary to achieve rational and precise control of defect emission. This work paves the way for enhancing defect identification and facilitating the engineering of highly efficient single photon sources and qubits using van der Waals materials.

Publisher

Springer Science and Business Media LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3