Abstract
AbstractAfter the breakthrough of the study on the two-dimensional (2D) layered phosphorus, group-V elemental ultrathin 2D layers have captured considerable attentions in recent years on account of their unique and promising electrical transport properties, including semiconductor features with direct and desirable energy band structures, outstanding carrier mobilities, controllable and tunable characteristics under applied strain, electric and magnetic fields, highly anisotropic phenomena along both in-plane and out-plane directions, topological transmission states, and negative Poisson’s ratio. Accordingly, a number of investigations on this family of 2D materials have been conducting rapidly, while initiating great potential and new opportunities on the nanoscale science and applications in optoelectronic, magneto-electronics, thermo-electronic, ferroelectric, topological spintronics, and so on. Herein, a specific review is provided with systematical summarizations and refinements on the recent advances of the electrical transport in group-V elemental ultrathin 2D layers from the blossoming field of research, while comprehensive discussion and some recommendations are put forward, with an expectation of broadening and deepening understanding of the family of 2D layers. Lastly, we provide critical motivation and challenge for future explorations in this promising territory.
Funder
National Natural Science Foundation of China
Research Grants Council, University Grants Committee
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献