Abstract
AbstractIn topological insulators (TI) for surface electron transport, dissipationless surface states are required and are activated by symmetry breaking usually by reducing thickness of the film. Substrates play an important role in modulating the surface properties by modifying the surface electronic and mechanical properties. In the present work, we have studied the n-GaN/p-Bi2Se3 topological heterojunction for the topological surface states and analyzed by Raman and ultrafast transient absorption (TA) spectroscopy probed in visible and NIR regions. Raman spectrum clearly shows the electron-phonon interaction at the surface by appearance of surface phonon modes (SPM) in heterojunction. TA spectroscopy is performed on Glass/Bi2Se3 and n-GaN/Bi2Se3 heterojunction to identify surface states, energy levels, charge transfer and carrier relaxation processes. Electrical measurements under dark and illuminated conditions were performed for deeper understanding of the interface states and their effect on electrical and optical performance. The study provides complete understanding of n-GaN/TI-based interfaces by spectroscopic and electrical measurements for their application in next-generation electronic and optical devices.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献