Direct observation of ferroelectricity in two-dimensional MoS2

Author:

Lipatov AlexeyORCID,Chaudhary Pradeep,Guan Zhao,Lu HaidongORCID,Li Gang,Crégut Olivier,Dorkenoo Kokou Dodzi,Proksch Roger,Cherifi-Hertel SaliaORCID,Shao Ding-FuORCID,Tsymbal Evgeny Y.ORCID,Íñiguez JorgeORCID,Sinitskii AlexanderORCID,Gruverman AlexeiORCID

Abstract

AbstractRecent theoretical predictions of ferroelectricity in two-dimensional (2D) van der Waals materials reveal exciting possibilities for their use in scalable low-power electronic devices with polarization-dependent functionalities. These prospects have been further invigorated by the experimental evidence of the polarization response in some transition metal chalcogenides (TMCs)—a group of narrow-band semiconductors and semimetals with a wealth of application potential. Among the TMCs, molybdenum disulfide (MoS2) is known as one of the most promising and robust 2D electronic materials. However, in spite of theoretical predictions, no ferroelectricity has been experimentally detected in MoS2, while the emergence of this property could enhance its potential for electronics applications. Here, we report the experimental observation of a stable room-temperature out-of-plane polarization ordering in 2D MoS2 layers, where polarization switching is realized by mechanical pressure induced by a tip of a scanning probe microscope. Using this approach, we create the bi-domain polarization states, which exhibit different piezoelectric activity, second harmonic generation, surface potential, and conductivity. Ferroelectric MoS2 belongs to the distorted trigonal structural 1T” phase, where a spontaneous polarization is inferred by its P3m1 space-group symmetry and corroborated by theoretical modeling. Experiments on the flipped flakes reveal that the 1T”-MoS2 samples consist of the monolayers with randomly alternating polarization orientation, which form stable but switchable “antipolar” head-to-head or tail-to-tail dipole configurations. Mechanically written domains are remarkably stable facilitating the application of 1T”-MoS2 in flexible memory and electromechanical devices.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3