3D Domain Arrangement in van der Waals Ferroelectric α‐In2Se3

Author:

Lu Haidong1,Masood Shehr Bano1,Loes Michael2,Acharya Khimananda3,Hossain Md. Sazzad2,Khurana Rashmeet K.2,Bagheri Saman2,Paudel Tula R.3,Lipatov Alexey4,Tsymbal Evgeny Y.1,Sinitskii Alexander1,Gruverman Alexei1ORCID

Affiliation:

1. Department of Physics and Astronomy University of Nebraska Lincoln NE 68588 USA

2. Department of Chemistry University of Nebraska Lincoln NE 68588 USA

3. Department of Physics South Dakota School of Mines and Technology Rapid City SD 57701 USA

4. Department of Chemistry Biology and Health Sciences South Dakota School of Mines and Technology Rapid City SD 57701 USA

Abstract

AbstractOne of the exceptional features of the van der Waals (vdW) ferroelectrics is the existence of stable polarization at a level of atomically thin monolayers. This ability to withstand a detrimental effect of the depolarization fields gives rise to complex domain configurations characterized, among others, by the presence of layered “antipolar” head‐to‐head (H‐H) or tail‐to‐tail (T‐T) dipole arrangements. In this study, tomographic piezoresponse force microscopy (TPFM) is employed to study the 3D polarization arrangement in vdW ferroelectric α‐In2Se3. Sequential removal of thin layers from the polar surface using the PFM tip reveals a complex 3D profile of the domain walls in the α‐In2Se3 crystals. Antiparallel domain layers stacked along the polar direction are also observed by PFM imaging of the non‐polar surfaces showing that H‐H and T‐T domain boundaries are commonly present in α‐In2Se3. Application of TPFM to the electrically written domains allows evaluation of their geometrical lateral‐to‐vertical size aspect ratio, which shows a strong prevalence for the sidewise expansion in comparison to the forward growth. Local IV measurements reveal a strong polarization direction dependence of conductivity due to the modulation of the energy barrier height as corroborated by theoretical modeling.

Funder

Directorate for Mathematical and Physical Sciences

Office of Multidisciplinary Activities

Division of Materials Research

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3