Abstract
AbstractA gas-mediated fabrication of centimeter-scale two-dimensional (2D) semiconductors and ultraviolet photodetector by a liquid metal-based printing was reported. Various large-scale 2D materials (Ga2O3, In2O3, SnO) were demonstrated to be directly printed at ambient air on different substrates. Such printing represents a generic, fast, clean, and scalable technique to quickly manufacture 2D semiconductors. The electrical properties were explored to quantify the printed 2D films, which were somewhat deficient in previous studies. In particular, to explore and facilitate the advantages of this 2D semiconductor in functional electronic applications, strategies for realizing fully printed Ga2O3/Si heterojunction photodetector via low-temperature and low-cost processes were developed. The device exhibits excellent sensibility and rapid photoresponse times. This work offers feasible way to develop high-performance ultraviolet photodetector for mass production. It also suggests a promising direction for making large-scale 2D photoelectronic and electronic systems and is expected to be extensively useful in the coming time.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献