Advances in Liquid Metal Printed 2D Oxide Electronics

Author:

Scheideler William J.1ORCID,Nomura Kenji2

Affiliation:

1. Thayer School of Engineering Dartmouth College Hanover NH 03755 USA

2. Department of Electrical and Computer Engineering University of California San Diego La Jolla CA 92093 USA

Abstract

Abstract2D metal oxides (2DMOs) have recently emerged as a high‐performance class of ultrathin, wide bandgap materials offering exceptional electrical and optical properties for a wide area of device applications in energy, sensing, and display technologies. Liquid metal printing represents a thermodynamically advantageous strategy for synthesizing 2DMOs by a solvent‐free and vacuum‐free scalable method. Here, recent progress in the field of liquid metal printed 2D oxides is reviewed, considering how the physics of Cabrera‐Mott oxidation gives this rapid, low‐temperature process advantages over alternatives such as sol‐gel and nanoparticle processing. The growth, composition, and crystallinity of a burgeoning set of 1–3 nm thick liquid metal printed semiconducting, conducting, and dielectric oxides are analyzed that are uniquely suited for the fabrication of high‐performance flexible electronics. The advantages and limitations of these strategies are considered, highlighting opportunities to amplify the impact of 2DMO through large‐area printing, the design of doped metal alloys, stacking of 2DMO to electrostatically engineer new oxide heterostructures, and implementation of 2D oxide devices for gas sensing, photodetection, and neuromorphic computing.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3