Abstract
AbstractWe report Chern insulating phases emerging from a single layer of layered chalcogenide CrSiTe3, a transition metal trichacogenides (TMTC) material, in the presence of charge doping. Due to strong hybridization with Te p orbitals, the spin-orbit coupling effect opens a finite band gap, leading to a nontrivial topology of the Cr eg conduction band manifold with higher Chern numbers. Our calculations show that quantum anomalous Hall effects can be realized by adding one electron in a formula unit cell of Cr2Si2Te6, equivalent to electron doping by 2.36 × 1014 cm−2 carrier density. Furthermore, the doping-induced anomalous Hall conductivity can be controlled by an external magnetic field via spin-orientation-dependent tuning of the spin-orbit coupling. In addition, we find distinct quantum anomalous Hall phases employing tight-binding model analysis, suggesting that CrSiTe3 can be a fascinating platform to realize Chern insulating systems with higher Chern numbers.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献