Precise Fermi level engineering in a topological Weyl semimetal via fast ion implantation

Author:

Mandal Manasi12ORCID,Chotrattanapituk Abhijatmedhi13ORCID,Woller Kevin2ORCID,Wu Lijun4ORCID,Xu Haowei2ORCID,Hung Nguyen Tuan15ORCID,Mao Nannan3ORCID,Okabe Ryotaro16ORCID,Boonkird Artittaya12,Nguyen Thanh12ORCID,Drucker Nathan C.17,Chen Xiaoqian M.8,Momiki Takashi9ORCID,Li Ju1210ORCID,Kong Jing3ORCID,Zhu Yimei4ORCID,Li Mingda12ORCID

Affiliation:

1. Quantum Measurement Group, MIT 1 , Cambridge, Massachusetts 02139, USA

2. Department of Nuclear Science and Engineering, MIT 2 , Cambridge, Massachusetts 02139, USA

3. Department of Electrical Engineering and Computer Science, MIT 3 , Cambridge, Massachusetts 02139, USA

4. Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory 4 , Upton, New York 11973-5000, USA

5. Frontier Research Institute for Interdisciplinary Sciences (FRIS), Tohoku University 5 , Sendai, Japan

6. Department of Chemistry, MIT 6 , Cambridge, Massachusetts 02139, USA

7. School of Engineering and Applied Sciences, Harvard University 7 , Cambridge, Massachusetts 02138, USA

8. Brookhaven National Laboratory 8 , Upton, New York 11973-5000, USA

9. Silicon Valley Office, Open Innovation Division, AISIN Technical Center of America, Inc. 9 , San Jose, California 95110, USA

10. Department of Materials Science and Engineering, MIT 10 , Cambridge, Massachusetts 02139, USA

Abstract

The precise controllability of the Fermi level is a critical aspect of quantum materials. For topological Weyl semimetals, there is a pressing need to fine-tune the Fermi level to the Weyl nodes and unlock exotic electronic and optoelectronic effects associated with the divergent Berry curvature. However, in contrast to two-dimensional materials, where the Fermi level can be controlled through various techniques, the situation for bulk crystals beyond laborious chemical doping poses significant challenges. Here, we report the milli-electron-volt (meV) level ultra-fine-tuning of the Fermi level of bulk topological Weyl semimetal tantalum phosphide using accelerator-based high-energy hydrogen implantation and theory-driven planning. By calculating the desired carrier density and controlling the accelerator profiles, the Fermi level can be experimentally fine-tuned from 5 meV below, to 3.8 meV below, to 3.2 meV above the Weyl nodes. High-resolution transmission electron microscopy reveals the crystalline structure is largely maintained under irradiation, while electrical transport indicates that Weyl nodes are preserved and carrier mobility is also largely retained. Our work demonstrates the viability of this generic approach to tune the Fermi level in semimetal systems and could serve to achieve property fine-tuning for other bulk quantum materials with ultrahigh precision.

Funder

U.S. Department of Energy

National Science Foundation

Basic Energy Sciences

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3