Abstract
AbstractWe report a theoretical investigation of the ultrafast dynamics of electrons and phonons in strained monolayer WS2 following photoexcitation. We show that strain substantially modifies the phase space for electron-phonon scattering, unlocking relaxation pathways that are unavailable in the pristine monolayer. In particular, strain triggers a transition between distinct dynamical regimes of the non-equilibrium lattice dynamics characterized by the emission of chiral phonons under high strain and linearly-polarized phonons under low strain. For valley-polarized electronic excitations, this mechanism can be exploited to selectively activate the emission of chiral phonons – phonons carrying a net angular momentum. Our simulations are based on state-of-the-art ab-initio methods and focus exclusively on realistic excitation and strain conditions that have already been achieved in recent experimental studies. Overall, strain emerges as a powerful tool for controlling chiral phonons emission and relaxation pathways in multivalley quantum materials.
Funder
Deutsche Forschungsgemeinschaft
Publisher
Springer Science and Business Media LLC