Abstract
AbstractRiboflavin, a soluble redox mediator for electron transfer, is involved in various redox processes in biogeochemical systems. This work gives some insights into the MIC mechanism of pure nickel (Ni) caused by Desulfovibrio vulgaris. Compared with pure copper (Cu) metabolite (M)-MIC, Ni MIC by D. vulgaris exhibits distinctly different corrosion behavior. 20 ppm (w/w) riboflavin dramatically enhances the corrosion rate of Ni (59% increase in weight loss), while it has no impact on Cu MIC. Furthermore, headspace H2 detection reveals that neither proton nor H2S corrosion occurs in Ni MIC (Cu MIC caused by biogenic H2S produces large amounts of H2, whereas Ni MIC does not). The thermodynamic analysis and experimental results indicate that Ni D. vulgaris MIC is caused by trapping extracellular electrons from Ni oxidation for energy, which belongs to extracellular electron transfer (EET)-MIC.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Materials Science (miscellaneous),Chemistry (miscellaneous),Ceramics and Composites
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献