How Often Should Microbial Contamination Be Detected in Aircraft Fuel Systems? An Experimental Test of Aluminum Alloy Corrosion Induced by Sulfate-Reducing Bacteria

Author:

Lu Bochao12,Zhang Yimeng1,Guo Ding1,Li Yan3,Zhang Ruiyong1ORCID,Cui Ning2,Duan Jizhou1ORCID

Affiliation:

1. Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China

2. School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China

3. Qingdao Campus of Naval Aviation University, Qingdao 266041, China

Abstract

Microbial contamination in aircraft fuel-containing systems poses significant threats to flight safety and operational integrity as a result of microbiologically influenced corrosion (MIC). Regular monitoring for microbial contamination in these fuel systems is essential for mitigating MIC risks. However, the frequency of monitoring remains a challenge due to the complex environmental conditions encountered in fuel systems. To investigate the impact of environmental variables such as water content, oxygen levels, and temperature on the MIC of aluminum alloy in aircraft fuel systems, orthogonal experiments with various combinations of these variables were conducted in the presence of sulfate-reducing bacteria. Among these variables, water content in the fuel oil demonstrated the most substantial influence on the corrosion rate of aluminum alloys, surpassing the effects of oxygen and temperature. Notably, the corrosion rate of aluminum alloys was the highest in an environment characterized by a 1:1 water/oil ratio, 0% oxygen, and a temperature of 35 °C. Within this challenging environment, conducive to accelerated corrosion, changes in the corrosion behavior of aluminum alloys over time were analyzed to identify the time point at which MIC intensified. Observations revealed a marked increase in the depth and width of corrosion pits, as well as in the corrosion weight-loss rate, starting from the 7th day. These findings offer valuable insights for determining the optimal frequency of microbial contamination detection in aircraft fuel systems.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3