Abstract
AbstractHigh entropy alloys (HEAs) are promising materials for various applications including nuclear reactor environments. Thus, understanding their behavior under irradiation and exposure to different environments is important. Here, two sets of near-equiatomic CoCrCuFeNi thin films grown on either SiO2/Si or Si substrates were irradiated at room temperature with 11.5 MeV Au ions, providing similar behavior to exposure to inert versus corrosion environments. The film grown on SiO2 had relatively minimal change up to peak damage levels above 500 dpa, while the film grown on Si began intermixing at the substrate–film interface at peak doses of 0.1 dpa before transforming into a multi-silicide film at higher doses, all at room temperature with minimal thermal diffusion. The primary mechanism is radiation-enhanced diffusion via the inverse Kirkendall and solute drag effects. The results highlight how composition and environmental exposure affect the stability of HEAs under radiation and give insights into controlling these behaviors.
Funder
DOE | Office of Science
DOE | SC | Basic Energy Sciences
DOE | SC | Fusion Energy Sciences
Publisher
Springer Science and Business Media LLC
Subject
Materials Chemistry,Materials Science (miscellaneous),Chemistry (miscellaneous),Ceramics and Composites
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献