Ultrasonic imaging in highly heterogeneous backgrounds

Author:

Pourahmadian F.12ORCID,Haddar H.34

Affiliation:

1. Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO, USA

2. Department of Applied Mathematics, University of Colorado Boulder, Boulder, CO, USA

3. INRIA Saclay Ile de France, 91120 Palaiseau, Paris, France

4. UMA, ENSTA, Paris Tech, 828, Bd des Marechaux, Paris, France

Abstract

This work formally investigates the differential evolution indicators as a tool for ultrasonic tracking of elastic transformation and fracturing in randomly heterogeneous solids. Within the framework of periodic sensing, it is assumed that the background at time t contains (i) a multiply connected set of viscoelastic, anisotropic and piecewise homogeneous inclusions, and (ii) a union of possibly disjoint fractures and pores. The support, material properties and interfacial condition of scatterers in (i) and (ii) are unknown, while elastic constants of the matrix are provided. The domain undergoes progressive variations of arbitrary chemo-mechanical origins such that its geometric configuration and elastic properties at future times are distinct. At every sensing step t , t 1 , , multi-modal incidents are generated by a set of boundary excitations, and the resulting scattered fields are captured over the observation surface. The test data are then used to construct a sequence of wavefront densities by solving the spectral scattering equation. The incident fields affiliated with distinct pairs of obtained wavefronts are analysed over the stationary and evolving scatterers for a suit of geometric and elastic evolution scenarios entailing both interfacial and volumetric transformations. The main theorem establishes the invariance of pertinent incident fields at the loci of static fractures and inclusions between a given pair of time steps, while certifying variation of the same fields over the modified regions. These results furnish a basisfor theoretical justification of differential evolution indicators for imaging in complex composites which, in turn, enable the exclusive tomography of evolution in a background endowed with many unknown features.

Funder

NSF

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3