Comparative Analysis of Particle Swarm Optimization and Artificial Neural Network Based MPPT with Variable Irradiance and Load

Author:

Srivastava Spandan1,Lata Charu1,Lohan Prateek1,Mosobi Rinchin W.1

Affiliation:

1. Electrical Engineering Department, Delhi Technological University (DTU), New Delhi, India

Abstract

The escalating demands and increasing awareness for the environment, resulted in deployment of Photovoltaic (PV) system as a viable option. PV system are widely installed for numerous applications. However, the challenges in tracking the maximum power with intermittent atmospheric condition and varying load is significant. Maximum Power Point Tracking (MPPT) algorithms are employed and based on their convergence speed, control of external variations and oscillation, the output power efficiency, and other significant factors viz. the algorithm complexity and implementation cost, novel MPPT approach are preferable than the conventional approach. This paper presents an artificial intelligence-based optimization controller for MPPT in a PV system under varying load and irradiance conditions. Comparative analysis of Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO) based MPPT is simulated and analysed. The PV system consisting of PV array and boost converter with MPPT controller feeds the DC load. The power conversion and panel efficiency are the significant factors to determine the effectiveness of tracking maximum power point. The simulation results show the performance of these controllers on the PV panel output power and the load side output power under changing loads and irradiance. In addition, the comparison of PV panel efficiency of ANN and PSO based MPPT techniques w.r.t changing loads is carried out. Based on the above analysis, PSO based MPPT algorithm marginally outperforms the ANN based MPPT algorithm. Further, the implementation of hybrid MPPT (ANN &PSO) for higher accuracy and tracking capability can be carried out as future work.

Publisher

FOREX Publication

Subject

Electrical and Electronic Engineering,Engineering (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3