Direct Evidence for Central Sites of Action of Zolmitriptan (311C90)

Author:

Goadsby PJ1,Knight YE1

Affiliation:

1. Institute of Neurology, The National Hospital for Neurology and Neurosurgery, London, UK

Abstract

The trigeminovascular system consists of bipolar neurons which innervate pain-sensitive intracranial structures and projecting to neurons in the superficial laminae of the caudal trigeminal nucleus and of the dorsal horns of C1 and C2. The serotonin (5HT1B/D) agonist zolmitriptan (311C90) has been shown to be effective in the treatment of acute attacks of migraine and experimental data suggest that it may have both peripheral and central sites of action. This study sought to further investigate possible central effects of zolmitriptan (311C90) by examining its distribution in the central nervous system. Specific binding of [3H]-zolmitriptan was determined both ex vivo and in vitro in the cat brain. For the ex vivo studies, cats were anaesthetized with halothane and -chloralose (60 mg/kg intraperitoneal). A femoral vein catheter was inserted for injection of the [3H]-zolmitriptan and then 1 h after injection the brain removed. For the in vitro studies fresh frozen brain slices were incubated with labelled and masking concentrations of zolmitriptan. The distribution of [3H]-zolmitriptan was determined using quantitative autoradiographic methods. The in vitro work demonstrated specific binding of [3H]-zolmitriptan in the superficial laminae of the trigeminal nucleus caudalis and dorsal horns of the C and C2 cervical spinal cord. The density of binding was 53 9 fmol/mg for the trigeminal nucleus caudalis, 47 7 fmol/mg for C1 and 50 6 fmol/mg for C2. The ex vivo work demonstrated binding in anatomically identical areas which was less dense than that seen with the in vitro method. These data confirm the existence of a population of receptors that specifically bind zolmitriptan following systemic administration. These receptors may, in part, be responsible for its clinical efficacy and reinforce the importance of central trigeminal neurons as a possible site of action of anti-migraine drugs.

Publisher

SAGE Publications

Subject

Clinical Neurology,General Medicine

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3