Caspase activation in the absence of mitochondrial changes in granulocyte apoptosis

Author:

NOPP A12,LUNDAHL J12,STRIDH H13

Affiliation:

1. Department of Medicine

2. Division of Clinical Immunology and Allergy

3. Division of Respiratory Medicine, Karolinska Hospital/Institute, Stockholm, Sweden

Abstract

SUMMARY Eosinophils and neutrophils are two different types of granulocytes evolved from a common haematopoetic precursor in the bone marrow. Eosinophils are mainly involved in parasitic infection and allergic inflammation while neutrophils mainly participate in the defence against bacterial infections. Prolongation of granulocyte life span by inhibition of apoptosis may lead to tissue load of cells, and this has been detected in different inflammatory reactions. The molecular mechanisms and the potential role of the mitochondria in granulocyte apoptosis are poorly understood. In the present study we have characterized further the role of the mitochondria in granulocyte-apoptosis by studying the sequence of mitochondrial permeability transition (MPT) induction, loss of mitochondrial membrane potential (Δψm) and release of cytochrome c. This was made possible by applying tributyltin (TBT), a well-characterized apoptotic stimulus and MPT-inducer. We also studied potential differences in apoptosis-susceptibility between eosinophils and neutrophils. Ten minutes of TBT-exposure resulted in a substantial caspase-3 activity in both eosinophils and neutrophils, followed by phosphatidylserine (PS)-exposure after 30–120 min. Interestingly, caspase-3 activity was not preceded by MPT-induction, loss of Δψm or by cytochrome c-release in either eosinophils or neutrophils. In conclusion, we have demonstrated an extremely rapid induction of caspase-3 activity and apoptosis in human blood granulocytes without prior mitochondrial changes, including loss of mitochondrial membrane potential and release of cytochrome c. Our results open the possibility for a mitochondrial-independent activation of caspase 3 and subsequent apoptosis in granulocytes.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3