Forecasting Parameters in the SABR Model

Author:

Chen Li,Zhu Jianing,Yang Cunyi

Abstract

We present two approaches to forecast parameters in the SABR model. The first approach is the vector auto-regressive moving-average model (VARMA) for the time series of the in-sample calibrated parameters, and the second is based on machine learning techniques called epsilon-support vector regression (ε-SVR). Using daily data of S&P 500 ETF option prices from 2014 Jan 01 to 2018 Dec 31, we first calibrate the daily values of the model parameters from the training sample, then conduct out-of-sample forecasting of parameters and pricing of options. Both approaches produce good fits between the forecasted and calibrated parameters for out-of-sample dates. A comparison study shows that using forecasted parameters as inputs, the SABR model generates better pricing results than assuming constant parameters or using lag parameters. We also discuss the market conditions under which one approach outperforms the other.

Publisher

Anser Press Pte. Ltd.

Reference14 articles.

1. Bin, C. (2007). Calibration of the Heston model with application in derivative pricing and hedging. Master's thesis, Department of Mathematics, Technical University of Delft, Delft, The Netherlands.

2. The principle of not feeling the boundary for the SABR model;Chen;Quantitative Finance,2019

3. The equivalent constant-elasticity-of-variance (CEV) volatility of the stochastic-alpha-beta-rho (SABR) model;Choi;Journal of Economic Dynamics & Control 128,2021

4. Full and fast calibration of the Heston stochastic volatility model;Cui;European Journal of Operational Research 263,2017

5. Mass at zero in the uncorrelated SABR model and implied volatility asymptotics;Gulisashvili;Quantitative Finance,2018

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3