Sustainable development through green innovation and resource allocation in cities: Evidence from machine learning

Author:

Mao Jun1,Xie Jiahao1,Hu Zunguo23,Deng Lijie2,Wu Haitao45ORCID,Hao Yu45678

Affiliation:

1. School of Mathematics and Statistics Hainan Normal University Haikou China

2. School of Economics & Management Changsha University of Science and Technology Changsha China

3. Hunan Modern Service Industry Research Institute Changsha University of Science and Technology Changsha China

4. School of Management and Economics Beijing Institute of Technology Beijing China

5. Center for Energy and Environmental Policy Research, Beijing Institute of Technology Beijing China

6. Sustainable Development Research Institute for Economy and Society of Beijing Beijing China

7. Collaborative Innovation Center of Electric Vehicles in Beijing Beijing China

8. Beijing Key Lab of Energy Economics and Environmental Management Beijing China

Abstract

AbstractChina has promoted innovation‐driven and green development to unprecedented strategic heights. However, compared to the large and rapid innovation investment, total factor productivity's (TFP) growth rate has shown a downward trend. Consequently, this study assesses the inefficiency caused by resource mismatch and discusses the impact of green innovation activities on green total factor productivity (GTFP). We use a causal forest‐based machine learning method to solve the endogenous problem. The empirically analyzes the observation samples of 272 prefecture‐level cities in China from 2008 to 2018 and obtains the asymptotic normality estimation on the average treatment effect (ATE). Simultaneously, clustering causal forest and ridge expressions, discusses the robustness of related problems. According to the results, (1) the effect of China's green innovation on GTFP is negative for a short time and positive for a long time; (2) the impact of green innovation activities on GTFP is subject to capital mismatch, while the statistical law of the impact of labor mismatch is not obvious but the adverse impact of resource mismatch is gradually improving; and (3), Green innovation has significantly improved China's GTFP, but it did not lead to ideal Growth rate of GTC.

Publisher

Wiley

Subject

Development,Renewable Energy, Sustainability and the Environment

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3