Analytical Review of Approaches to the Distribution of Tasks for Mobile Robot teams Based on Soft Computing Technologies

Author:

Darintsev Oleg,Migranov Ayrat

Abstract

The use of various types of heuristic algorithms based on soft computing technologies for the distribution of tasks in groups of mobile robots performing monosyllabic operations in a single workspace is considered: genetic algorithms, ant algorithms and artificial neural networks. It is shown that this problem is NP-complex and its solution by direct iteration for a large number of tasks is impossible. The initial problem is reduced to typical NP-complete problems: the generalized problem of finding the optimal group of closed routes from one depot and the traveling salesman problem. A description of each of the selected algorithms and a comparison of their characteristics are presented. A step-by-step algorithm of operation is given, taking into account the selected genetic operators and their parameters for a given population volume. The general structure of the developed algorithm is presented, which makes it possible to solve a multi-criteria optimization problem efficiently enough, taking into account time costs and the integral criterion of robot efficiency, taking into account energy costs, functional saturation of each agent of the group, etc. The possibility of solving the initial problem using an ant algorithm and a generalized search for the optimal group of closed routes is shown. For multi-criteria optimization, the possibility of linear convolution of the obtained vector optimality criterion is shown by introducing additional parameters characterizing group control: the overall efficiency of the functioning of all robots, the energy costs for the functioning of the support group and the energy for placing one robot on the work field. To solve the task distribution problem using the Hopfield neural network, its representation is made in the form of a graph obtained during the transition from the generalized task of finding the optimal group of closed routes from one depot to the traveling salesman problem. The quality indicator is the total path traveled by each of the robots in the group.

Publisher

SPIIRAS

Subject

Artificial Intelligence,Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3