Using SAR Data for Monitoring of Agricultural Crops in the South of the Russian Far East

Author:

Verkhoturov Andrey,Stepanov Aleksey,Illarionova Lyubov

Abstract

The use of SAR data to monitoring agricultural crops is a promising area of research designed to complement existing methods and technologies based on the analysis of multispectral images. The main advantages of vegetation indices calculated from SAR data include their sensitivity to the polarimetric properties of the backscatter intensity, its scattering characteristics, and independence from cloud cover. This is especially important for the territory of the south of the Russian Far East, whose monsoon climate provides humid and cloudy weather during the period when crops gain maximum biomass. For arable lands in the Khabarovsk Territory and the Amur Region, a total of 64 Sentinel-1 SAR images were obtained from May to October 2021. For each date, the values of the DpRVI, RVI, VH/VV indices were calculated and time series were constructed for the entire observation period for individual fields (342 fields in total). NDVI time series were constructed from Sentinel-2 multispectral images using a cloud mask. The characteristics of time series extremes were calculated for different types of arable land: soybeans, oats, and fallows. It was shown that for each crop the seasonal curves DpRVI, RVI, VH/VV had a characteristic appearance. It was found that the DpRVI demonstrated the highest stability – the coefficients of variation of the seasonal variation of DpRVI were significantly lower than those for RVI and VH/VV. It was also revealed that the similarity between the curves of these indices remained for regions quite distant from each other - the Khabarovsk Territory and the Amur Region. The main characteristics of the seasonal variation of time series of radar indices were calculated in comparison with NDVI - the magnitude of the maximum, the date of the maximum and the values of the coefficient of variation for these indicators. It was found, firstly, that the values of these indicators in different regions are similar to each other; secondly, the variability of the maximum and the day of the maximum for DpRVI is lower than for RVI and VH/VV; thirdly, the variability of the maximum and the day of the maximum for DpRVI is comparable to NDVI. Thus, time series of radar indices DpRVI, RVI, VH/VV for the main types of agricultural lands in the south of the Far East have distinctive features and can be used in classification problems, yield modeling and crop rotation control.

Publisher

SPIIRAS

Reference26 articles.

1. Якушев В.П., Захарян Ю.Г., Блохина С.Ю. Состояние и перспективы использования дистанционного зондирования Земли в сельском хозяйстве // Современные проблемы дистанционного зондирования земли из космоса. 2022. Т. 19. № 1. С. 287–294.

2. Fisette T., Rollin P., Aly Z., Campbell, L., Daneshfar, B., Filyer, P., Smith A., Davidson A., Shang J., Jarvis I. AAFC annual crop inventory // Second International Conference on Agro-Geoinformatics (Agro-Geoinformatics). 2013. pp. 270–274.

3. Лупян Е.А., Барталев С.А., Толпин В.А., Жарко В.О., Крашенинникова Ю.С., Оксюкевич А.Ю. Использование спутникового сервиса ВЕГА в региональных системах дистанционного мониторинга // Современные проблемы дистанционного зондирования земли из космоса. 2014. Т. 11. № 3. С. 215–232.

4. Лупян Е.А., Прошин А.А., Бурцев М.А., Кашницкий А.В., Балашов И.В., Барталев С.А., Бриль А.А., Егоров В.А., Жарко В.О., Константинова А.М., Кобец Д.А., Мазуров А.А., Марченков В.В., Матвеев А.М., Миклашевич Т.С., Плотников Д.Е., Радченко М.В., Стыценко Ф.В., Сычугов И.Г., Толпин В.А., Уваров И.А., Хвостиков С.А., Ховратович Т.С. Система «Вега-Science»: особенности построения, основные возможности и опыт использования // Современные проблемы дистанционного зондирования земли из космоса. 2021. Т. 18. № 6. С. 9–31.

5. Денисов П.В., Трошко К.А., Лупян Е.А., Толпин В.А. Возможности и опыт использования информационной системы ВЕГА-PRO для мониторинга сельскохозяйственных земель // Вычислительные технологии. 2022. Т. 27. № 3. С. 66–83.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. About One Way to Scan a Surface for a Home Walking Robot;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3