A Simplified Method of Accurate Postprocessing of Diffusion Tensor Imaging for Use in Brain Tumor Resection

Author:

Bonney Phillip A.1,Conner Andrew K.1,Boettcher Lillian B.1,Cheema Ahmed A.1,Glenn Chad A.1,Smitherman Adam D.1,Pittman Nathan A.2,Sughrue Michael E.1

Affiliation:

1. Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma

2. Medtronic, Dublin, Ireland

Abstract

Abstract BACKGROUND: Use of diffusion tensor imaging (DTI) in brain tumor resection has been limited in part by a perceived difficulty in implementing the techniques into neurosurgical practice. OBJECTIVE: To demonstrate a simple DTI postprocessing method performed without a neuroscientist and to share results in preserving patient function while aggressively resecting tumors. METHODS: DTI data are obtained in all patients with tumors located within presumed eloquent cortices. Relevant white matter tracts are mapped and integrated with neuronavigation by a nonexpert in < 20 minutes. We report operative results in 43 consecutive awake craniotomy patients from January 2014 to December 2014 undergoing resection of intracranial lesions. We compare DTI-expected findings with stimulation mapping results for the corticospinal tract, superior longitudinal fasciculus, and inferior fronto-occipital fasciculus. RESULTS: Twenty-eight patients (65%) underwent surgery for high-grade gliomas and 11 patients (26%) for low-grade gliomas. Seventeen patients had posterior temporal lesions; 10 had posterior frontal lesions; 8 had parietal-temporal-occipital junction lesions; and 8 had insular lesions. With DTI-defined tracts used as a guide, a combined 65 positive maps and 60 negative maps were found via stimulation mapping. Overall sensitivity and specificity of DTI were 98% and 95%, respectively. Permanent speech worsening occurred in 1 patient (2%), and permanent weakness occurred in 3 patients (7%). Greater than 90% resection was achieved in 32 cases (74%). CONCLUSION: Accurate DTI is easily obtained, postprocessed, and implemented into neuronavigation within routine neurosurgical workflow. This information aids in resecting tumors while preserving eloquent cortices and subcortical networks.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical),Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3