A Hybrid Method of Feature Extraction for Tumor Classification Using Microarray Gene Expression Data

Author:

Sahu Sitanshu Sekhar1,PANDA G.2,Barik Ramchandra3

Affiliation:

1. National Institute of Technology, Rourkela, Odisha, India

2. School of Electrical Sciences , Indian Institute of Technology, Bhubaneswar, INDIA

3. Sambalpur University Institute of Information Technology, Odisha, India

Abstract

Classification of disease phenotypes using microarray gene expression data faces a critical challenge due to its high dimensionality and small sample size nature. Hence there is a need to develop efficient dimension reduction techniques to improve the class prediction performance. In this paper we present a hybrid feature extraction method to combat the dimensionality problem by combining F-score statistics with autoregressive (AR) model. The F-score statistics preselect the discriminant genes from the raw microarray data and then this reduced set is modeled by the AR method to extract the relevant information. A low complexity radial basis function neural network (RBFNN) is also introduced to efficiently classify the microarray data. Exhaustive simulation study on six standard datasets shows the potentiality of the proposed method with the advantage of reduced computational complexity.

Publisher

Institute for Project Management Pvt. Ltd

Subject

Pharmacology (medical)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Feature Extraction Technique for ECG Arrhythmia Classification Using ML;2023 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech);2023-11-14

2. Facioscapulohumeral Muscular Dystrophy Diagnosis Using Hierarchical Clustering Algorithm and K-Nearest Neighbor Based Methodology;International Journal of E-Health and Medical Communications;2017-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3