Short-term inbound rail transit passenger flow prediction based on BILSTM model and influence factor analysis
Author:
Publisher
Maximum Academic Press
Reference44 articles.
1. Jiang W, Zhang H, Long Y, Chen J, Sui Y, et al. 2021. GPS data in urban online ride-hailing: The technical potential analysis of demand prediction model. Journal of Cleaner Production 279:123706
Jiang W, Zhang H, Long Y, Chen J, Sui Y, et al. 2021. GPS data in urban online ride-hailing: The technical potential analysis of demand prediction model. Journal of Cleaner Production 279:123706
2. Ke J, Feng S, Zhu Z, Yang H, Ye J. 2021. Joint predictions of multi-modal ride-hailing demands: A deep multi-task multi-graph learning-based approach. Transportation Research Part C: Emerging Technologies 127:103063
Ke J, Feng S, Zhu Z, Yang H, Ye J. 2021. Joint predictions of multi-modal ride-hailing demands: A deep multi-task multi-graph learning-based approach. Transportation Research Part C: Emerging Technologies 127:103063
3. Rahman MH, Rifaat SM. 2021. Using spatio-temporal deep learning for forecasting demand and supply-demand gap in ride-hailing system with anonymised spatial adjacency information. IET Intelligent Transport Systems 15:941−57
Rahman MH, Rifaat SM. 2021. Using spatio-temporal deep learning for forecasting demand and supply-demand gap in ride-hailing system with anonymised spatial adjacency information. IET Intelligent Transport Systems 15:941−57
4. Zhang D, Xiao F, Shen M, Zhong S. 2021. DNEAT: A novel dynamic node-edge attention network for origin-destination demand prediction. Transportation Research Part C: Emerging Technologies 122:102851
Zhang D, Xiao F, Shen M, Zhong S. 2021. DNEAT: A novel dynamic node-edge attention network for origin-destination demand prediction. Transportation Research Part C: Emerging Technologies 122:102851
5. Elman JL. 1991. Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning 7:195−225
Elman JL. 1991. Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning 7:195−225
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A CNN-LSTM Model for Short-Term Passenger Flow Forecast Considering the Built Environment in Urban Rail Transit Stations;Journal of Transportation Engineering, Part A: Systems;2024-11
2. Spatio-temporal multi-graph convolutional network based on wavelet analysis for vehicle speed prediction;Physica A: Statistical Mechanics and its Applications;2023-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3