Using spatio‐temporal deep learning for forecasting demand and supply‐demand gap in ride‐hailing system with anonymised spatial adjacency information
Author:
Affiliation:
1. Department of Civil Engineering International University of Business Agriculture and Technology Dhaka Bangladesh
2. Department of Civil and Environmental Engineering Islamic University of Technology Gazipur Bangladesh
Publisher
Institution of Engineering and Technology (IET)
Subject
Law,Mechanical Engineering,General Environmental Science,Transportation
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1049/itr2.12073
Reference54 articles.
1. Understanding ridesplitting behavior of on‐demand ride services: An ensemble learning approach;Chen X.(M.);Transp. Res. Part C Emerg. Technol.,2017
2. Clewlow R.R. Mishra G.S.:Disruptive transportation: The adoption utilization and impacts of ride‐hailing in the United States.UC Davis:Institute of Transportation Studies(2017)
3. He S. Shin K.G.:Spatio‐temporal capsule‐based reinforcement learning for mobility‐on‐demand network coordination. In:The Web Conference 2019 ‐ Proceedings of the World Wide Web Conference WWW 2019 San Francisco pp.2806–2813(2019)
4. Short‐term forecasting of passenger demand under on‐demand ride services: A spatio‐temporal deep learning approach;Ke J.;Transp. Res. Part C Emerg. Technol.,2017
5. Predicting Taxi–Passenger Demand Using Streaming Data
Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Future Navigation Demand Trends: Accurate Ride Request Forecasting Optimization Using Machine Learning;2024 Third International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN);2024-07-18
2. Linear regression coupled Wasserstein generative adversarial network for direct demand modeling of ride-hailing trips in Chicago and Austin;Transportation Letters;2024-07-06
3. Research on Asphalt Pavement Disease Detection Based on Improved TransUNet;Hans Journal of Civil Engineering;2024
4. Fairness-Enhancing Deep Learning for Ride-Hailing Demand Prediction;IEEE Open Journal of Intelligent Transportation Systems;2023
5. Spatial-Temporal Correlation Neural Network for Long Short-Term Demand Forecasting During COVID-19;IEEE Access;2023
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3