1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015. TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from .
2. A data fusion framework for real-time risk assessment on freeways;Ahmed;Transp. Res. Part C: Emerg. Technol.,2013
3. On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment;Alonso-Mora;Proc. Nat. Acad. Sci.,2017
4. Dynamic data-driven local traffic state estimation and prediction;Antoniou;Transp. Res. Part C: Emerg. Technol.,2013
5. A comparative assessment of multi-sensor data fusion techniques for freeway traffic speed estimation using microsimulation modeling;Bachmann;Transp. Res. Part C: Emerg. Technol.,2013