INCREASING THE INSULATION PROPERTIES OF FILTER RESPIRATORS TO PROTECT MINERS’ RESPIRATORY ORGANS FROM DUST

Author:

Cheberiachko Serhii,Cheberiachko Yuriy,Deryugin Oleg,Kravchenko Bohdan,Nehrii Tetiana,Nehrii Serhii,Zolotarova Oksana

Abstract

To increase the insulating properties of elastomeric half-masks, it is suggested to perforate the obturator in the area of the nasal bridge, chin and cheeks, which allows for adjustment in its size, thus preventing the occurrence of wrinkles on the user’s face in the areas which are the individual features of a particular user’s face. Three versions of the perforated filter respirator obturator have been proposed: in the first, the holes are made along the entire perimeter of the obturator; in the second, the holes are only in the area of the cheeks and nasal bridge; in the third, incisions with a diameter of 5 mm are made in the area of the nasal bridge and cheeks. The result of modelling a set of alternative solutions taking into account the coefficient of protection of filter respirator half-masks, the distribution of compressive forces, which are determined in the environment of the packages “ANSYS” and “Solid works”, has been obtained on the basis of main indicators of the proposed models. To make a decision on choosing the best model, the mass of the elastomeric half mask, its dimensions and the complexity of the design were additionally considered. On the basis of expert evaluation, according to the described procedure for determining the utility function of the factors from their values, it has been defined that the second model of the half-mask is characterized by the best parameters. Conducted laboratory studies to determine the aerosol absorption coefficient by the obturation line showed the lowest indicator in the second option.

Publisher

Faculty of Mining, Geology and Petroleum Engineering

Subject

General Earth and Planetary Sciences,Geology,General Energy,Geotechnical Engineering and Engineering Geology,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3