NUMERICAL STUDY OF THE FRACTURING MECHANISM AROUND A BLASTHOLE AND INVESTIGATING THE EFFECT OF DISCONTINUITIES ON THE FRACTURE PATTERN
-
Published:2020
Issue:4
Volume:35
Page:33-44
-
ISSN:1849-0409
-
Container-title:Rudarsko-geološko-naftni zbornik
-
language:
-
Short-container-title:MGPB
Author:
Hajibagherpour Ali Reza,Mansouri Hamid,Bahaaddini Mojtaba
Abstract
The mechanism of rock fragmentation around blastholes is of prior importance in the evaluation of drilling and blasting performance in open pit and underground mines. This paper aims to numerically investigate the crack propagation mechanism around a single blasthole using the distinct element method (DEM). In this study, two specimens with different borehole diameters were considered and the effects of the stress waves on their cracking mechanism were simulated. To validate the numerical model, the length of the radial cracks around each blasthole was measured and compared against an analytical fracture mechanics model. The fractured zones around the blasthole were also compared against previous experimental tests and good agreement was observed. The effect of a single discontinuity on the crack propagation mechanism was also studied and it was found that the discontinuity normal stiffness plays a significant role in the fractured zones around the blasthole. For low values of normal stiffness, the discontinuity surface acted as a free surface, and the shock wave was significantly reflected, while at high values of normal stiffness, cracks propagate across the discontinuity surface.
Publisher
Faculty of Mining, Geology and Petroleum Engineering
Subject
General Earth and Planetary Sciences,Geology,General Energy,Geotechnical Engineering and Engineering Geology,Water Science and Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献