DISCRETE FRACTURE NETWORK (DFN) MODELLING OF FRACTURED RESERVOIR BASED ON GEOMECHANICAL RESTORATION, A CASE STUDY IN THE SOUTH OF IRAN

Author:

Shiri Yousef,Shiri Alireza

Abstract

Fractured reservoirs have always been of interest to many researchers because of their complexities and importance in the oil industry. The purpose of the current study is to model the fractured reservoir based on geomechanical restoration. Our target is the Arab Formation reservoir which is composed of seven limestone and dolomite layers, separated by thin anhydrite evaporate rock. First of all, in addition to the intensity, the dip, and the azimuth of the fractures, the magnitude and the direction of the stresses are determined using wireline data e.g. photoelectric absorption factor (PEF), sonic density, neutron porosity, a dipole shear sonic imager (DSI), a formation micro imager (FMI), and a modular formation dynamics tester (MDT). Then, the seismic data are interpreted and the appropriate seismic attributes are selected. One of our extracted attributes was the ant tracking attribute which is used for identifying large-scale fractures. Using this data, fractures and faults can be identified in the areas away from wells in different scales. Subsequently, the initial model of the reservoir is reconstructed. After that, the stress field and the distribution of fractures are obtained using the relationship between the stresses, the strains, and the elastic properties of the existing rocks. The model is finely approved using the azimuth and the intensity of fractures in the test well. Our findings showed that the discrete fracture network (DFN) model using geomechanical restoration was positively correlated with real reservoir conditions. Also, the spatial distribution of fractures was improved in comparison to the deterministic-stochastic DFN.

Publisher

Faculty of Mining, Geology and Petroleum Engineering

Subject

General Earth and Planetary Sciences,Geology,General Energy,Geotechnical Engineering and Engineering Geology,Water Science and Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3