Improving a geophysical method to determine the boundaries of ore-bearing rocks considering certain tectonic disturbances

Author:

Kassymkanova Khaini KamalORCID,Istekova SaraORCID,Rysbekov KanayORCID,Amralinova BakytzhanORCID,Kyrgizbayeva GuldanaORCID,Soltabayeva SauleORCID,Dossetova GulnaraORCID

Abstract

Purpose is to improve a geophysical method of determining the boundaries of ore-bearing rocks and tectonic disturbances under complex mining and geological conditions while developing 3D geological models. Methods. 3D geological models of natural objects were developed on the basis of complex structural, geological-geophysical, and lithological facies analysis with the wide use of modern 3D seismic exploration technologies taking into consideration the parameters for prediction and selection of optimal factors for ore deposit development. Findings. The scientifically substantiated result is represented by the increased reliability and efficiency of seismic exploration for singling out the ore horizons and ore bodies as well as tectonic disturbances at different depths by specifying geological structures of the prospective areas and sites under study. Originality. Basing on the carried out studies, methods of the development of 3D geological models to study depth geological inhomogeneities of the ore-bearing complexes under complex mining and geological conditions were improved. Practical implications. The obtained results of 3D modelling of geological media basing on the applied 3D seismic exploration will help increase a confidence factor of scientifically substantiated prediction of ore deposits, provide optimal development of complex ore objects, reduce risks, and increase economic efficiency of solid deposit development under complex mining and geological conditions.

Publisher

Dnipro University of Technology

Subject

Geochemistry and Petrology,Geotechnical Engineering and Engineering Geology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3