RosENet: Improving Binding Affinity Prediction by Leveraging Molecular Mechanics Energies with an Ensemble of 3D Convolutional Neural Networks
Author:
Affiliation:
1. DS3Lab, System Group, Department of Computer Sciences, ETH Zurich, CH-8092 Zurich, Switzerland
2. Institute of Medical Virology, University of Zurich (UZH), CH-8057 Zurich, Switzerland
Funder
Schweizerischer Nationalfonds zur F??rderung der Wissenschaftlichen Forschung
Publisher
American Chemical Society (ACS)
Subject
Library and Information Sciences,Computer Science Applications,General Chemical Engineering,General Chemistry
Link
https://pubs.acs.org/doi/pdf/10.1021/acs.jcim.0c00075
Reference44 articles.
1. A machine learning approach towards the prediction of protein–ligand binding affinity based on fundamental molecular properties
2. Yaseen, A.; Abbasi, W. A. Protein Binding Affinity Prediction Using Support Vector Regression and Interfecial Features. In 2018 15th International Bhurban Conference on Applied Sciences and Technology (IBCAST); IEEE, 2018; pp 194–198.
3. MoleculeNet: a benchmark for molecular machine learning
4. Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
5. Pred-binding: large-scale protein–ligand binding affinity prediction
Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Molecular set representation learning;Nature Machine Intelligence;2024-07-05
2. MISATO: machine learning dataset of protein–ligand complexes for structure-based drug discovery;Nature Computational Science;2024-05-10
3. Recent advances in computational and experimental protein-ligand affinity determination techniques;Expert Opinion on Drug Discovery;2024-05-07
4. Modern machine‐learning for binding affinity estimation of protein–ligand complexes: Progress, opportunities, and challenges;WIREs Computational Molecular Science;2024-05
5. Enhancing Docking Accuracy with PECAN2, a 3D Atomic Neural Network Trained without Co-Complex Crystal Structures;Machine Learning and Knowledge Extraction;2024-03-11
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3