Molecular set representation learning

Author:

Boulougouri MariaORCID,Vandergheynst Pierre,Probst DanielORCID

Abstract

AbstractComputational representation of molecules can take many forms, including graphs, string encodings of graphs, binary vectors or learned embeddings in the form of real-valued vectors. These representations are then used in downstream classification and regression tasks using a wide range of machine learning models. However, existing models come with limitations, such as the requirement for clearly defined chemical bonds, which often do not represent the true underlying nature of a molecule. Here we propose a framework for molecular machine learning tasks based on set representation learning. We show that learning on sets of atom invariants alone reaches the performance of state-of-the-art graph-based models on the most-used chemical benchmark datasets and that introducing a set representation layer into graph neural networks can surpass the performance of established methods in the domains of chemistry, biology and material science. We introduce specialized set representation-based neural network architectures for reaction-yield and protein–ligand binding-affinity prediction. Overall, we show that the technique we denote molecular set representation learning is both an alternative and an extension to graph neural network architectures for machine learning tasks on molecules, molecule complexes and chemical reactions.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3