An Advanced Long Short-Term Memory (LSTM) Neural Network Method for Predicting Rate of Penetration (ROP)
Author:
Affiliation:
1. College of Petroleum Engineering, Yangtze University, WuhanHubei430100, China
2. Key Laboratory of Hubei Province for Oil and Gas Drilling and Production Engineering, Wuhan430100, Hubei, China
Funder
Ministry of Science and Technology of the People's Republic of China
Natural Science Foundation of Hubei Province
China Oilfield Services Limited
Publisher
American Chemical Society (ACS)
Subject
General Chemical Engineering,General Chemistry
Link
https://pubs.acs.org/doi/pdf/10.1021/acsomega.2c06308
Reference58 articles.
1. Performance Comparison of Algorithms for Real-Time Rate-of-Penetration Optimization in Drilling Using Data-Driven Models
2. ROP and TOB optimization using machine learning classification algorithms
3. Application of hybrid artificial neural networks for predicting rate of penetration (ROP): A case study from Marun oil field
4. Computational prediction of the drilling rate of penetration (ROP): A comparison of various machine learning approaches and traditional models
5. Prediction of Penetration Rate for PDC Bits Using Indices of Rock Drillability, Cuttings Removal, and Bit Wear
Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A guided genetic algorithm-based ensemble voting of polynomial regression and LSTM (GGA-PolReg-LSTM) for congestion prediction using IoT and air quality data in sustainable cities;The Journal of Supercomputing;2024-05-23
2. ROP Prediction Method Based on PCA–Informer Modeling;ACS Omega;2024-05-22
3. Prediction of penetration rate and optimization of weight on a bit using artificial neural networks;Bulletin of the Tomsk Polytechnic University Geo Assets Engineering;2024-03-28
4. Real-time prediction of ROP based on GRU-Informer;Scientific Reports;2024-01-25
5. Real-time monitoring and optimization of drilling performance using artificial intelligence techniques: a review;Sustainable Natural Gas Drilling;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3