A Hybrid H∞ Control Based ILC Design Approach for Trajectory Tracking of a Twin Rotor Aerodynamic System

Author:

Saleem Faisal1,Ali Ahsan1,Shaikh Inam ul Hasan1,Wasim Muhammad1

Affiliation:

1. Department of Electrical Engineering, University of Engineering and Technology, Taxila, Pakistan.

Abstract

This paper investigates the trajectory tracking problem for a Multi-Input Multi-Output (MIMO) Twin Rotor Aerodynamic System (TRAS) using a hybrid architecture based on an H∞∞∞∞ controller and Iterative Learning Control (ILC). TRAS is a fast, nonlinear coupled system and therefore it is a challenging task to design a control system that ensures the tracking for fast changing trajectories. The controllers proposed in the literature for the TRAS through linear approaches tend to have a large control effort, while the ones designed using the nonlinear approaches track only for smooth input trajectories. Both issues are important from control point of view. In this paper, these issues are addressed by designing a feedback H∞∞∞∞ control that stabilizes the system and a feedforward ILC which reduces the control effort. The H∞∞∞∞ controller achieves the tracking for input trajectories with sharp edges, but the control effort required for tracking is large. With the proposed hybrid approach, tracking is achieved by the H∞∞∞∞ controller whereas the required control effort is reduced in each subsequent iteration by ILC. After a few iterations, accurate tracking at a minimized control effort is achieved. The simulations have been performed using MATLAB software and the controller designed through the proposed approach has been validated on nonlinear model of the system. The results of the proposed technique, compared with the flatness-based and back-stepping control strategies, show that the proposed controller ensures accurate tracking at the reduced control effort.

Publisher

Mehran University of Engineering and Technology

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3