Abstract
Paraloid B72™ acrylic varnish has been used in the conservation of cultural properties since 1950’s. With a Tg close to 40 oC, some substances can be adsorbed onto varnished surfaces. There are several methods for cleaning works of art, each with its own specificities. This article presents a new alternative method. The cellulose/SBA-15 adsorbent sheets act as containers for the cleaning material, allowing it to act on the surface of the pictorial layer, dissolving and adsorbing unwanted material from the painting, without causing problems such as penetration, paint abrasion, residues, etc. They were tested on original paintings and on a mimetic. The raw materials, artwork, mimetic, and adsorbent sheets, before and after application, were characterized by TG/DTG and DTA; FTIR; XRF; surface digital microscopy and stereoscopy. FTIR characterized the raw materials and adsorbent sheets. The thermal behavior of the raw materials and adsorbent sheets, before and after application, were evaluated by TG/DTG and DTA. The evaluation of the works, the mimetic and the adsorption sheets, before and after application, by XRF showed that there was no damage to the originals and the mimetic. The cellulose sheet/SBA-15 as an adsorbent for B72™ in cleaning works of art, using solvent, proved to be effective
Publisher
Universidade Estadual de Londrina
Reference16 articles.
1. American Society for Testing and Materials. (2012). D3418-21 Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry. ASTM.
2. Asunción, J. (2002). O Papel – Técnicas e Métodos Tradicionais de Fabrico. Ed. Estampa.
3. Baij, L., Buijs, J., Hermans, J., Raven, L., Iedema, P. D., Keune, K., & Sprakel, J. (2020). Quantifying solvent action in oil paint using portable laser speckle imaging. Scientific Reports, 10, 10574.
4. Barrett, E. P., Joyner, L. G., & Halenda, P. P. (1951). The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, 73, 373–380.
5. Bonini, M., Lenz, S., Giorgi, R., & Baglioni, P. (2007). Nanomagnetic Sponges for the Cleaning of Works of Art. Langmuir, 23(17), 8681–8685.