Quantifying solvent action in oil paint using portable laser speckle imaging

Author:

Baij Lambert,Buijs Jesse,Hermans Joen J.,Raven Laura,Iedema Piet D.,Keune Katrien,Sprakel Joris

Abstract

AbstractThe exposure of oil paintings to organic solvents for varnish removal or to water for the removal of surface dirt can affect the chemical and physical properties of oil paint in an undesired way. Solvents can temporarily plasticise and swell the polymerised oil paint binding medium, enhancing both the thermal mobility and mechanical displacement of pigments embedded in this film. The enhancement of these microscopic motions can affect both the chemical and physical stability of the object as a whole. In order to minimise solvent exposure during cleaning, an analytical method that can quantitatively measure the microscopic motions induced by solvent uptake, is required first. In this study, we use Fourier Transform Laser Speckle Imaging (FT-LSI) and a newly developed portable FT-LSI setup as highly resolved motion detection instruments. We employ FT-LSI to probe pigment motion, with high spatiotemporal resolution, as a proxy for the destabilising effects of cleaning solvents. In this way, we can study solvent diffusion and evaporation rates and the total solvent retention time. In addition, qualitative spatial information on the spreading and homogeneity of the applied solvent is obtained. We study mobility in paint films caused by air humidity, spreading of solvents as a result of several cleaning methods and the protective capabilities of varnish. Our results show that FT-LSI is a powerful technique for the study of solvent penetration during oil paint cleaning and has a high potential for future use in the conservation studio.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3