We -T classification of diesel fuel droplet impact regimes

Author:

Jadidbonab HesamaldinORCID,Malgarinos Ilias,Karathanassis Ioannis,Mitroglou Nicholas,Gavaises Manolis

Abstract

A combined experimental and computational investigation of micrometric diesel droplets impacting on a heated aluminium substrate is presented. Dual view high-speed imaging has been employed to visualize the evolution of the impact process at various conditions. The parameters investigated include wall-surface temperature ranging from 140 to 400°C, impact Weber and Reynolds numbers of 19–490 and 141–827, respectively, and ambient pressure of 1 and 2 bar. Six possible post-impact regimes were identified, termed as Stick, Splash, Partial-Rebound, Rebound, Breakup-Rebound and Breakup-Stick , and plotted on the We-T map. Additionally, the temporal variation of the apparent dynamic contact angle and spreading factor have been determined as a function of the impact Weber number and surface temperature. Numerical simulations have also been performed using a two-phase flow model with interface capturing, phase-change and variable physical properties. Increased surface temperature resulted to increased maximum spreading diameter and induced quicker and stronger recoiling behaviour, mostly attributed to the change of liquid viscosity.

Funder

Lloyd's Register Foundation

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference84 articles.

1. The dynamics and leidenfrost temperature of drops impacting on a hot surface at small angles

2. Outcomes from a drop impact on solid surfaces;Rioboo R;At. Sprays,2001

3. Dynamic wetting angle of a spreading droplet

4. Dynamic Leidenfrost effect: relevant time and length scales;Shirota M;Phys. Rev.,2016

5. SPLASHING PHENOMENA DURING LIQUID DROPLET IMPACT

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3