Interaction between Droplets and Particles as Oil–Water Slurry Components

Author:

Islamova Anastasia,Tkachenko PavelORCID,Pavlova Kristina,Strizhak PavelORCID

Abstract

The characteristics of the collisions of droplets with the surfaces of particles and substrates of promising oil–water slurry components (oil, water and coal) were experimentally studied. Particles of coals of different ranks with significantly varying surface wettability were used. The following regimes of droplet–particle collisions were identified: agglomeration, stretching separation and stretching separation with child droplets. The main characteristics of resulting child droplets were calculated. Droplet–particle interaction regime maps in the B = f(We) coordinates were constructed. Equations to describe the boundaries of transitions between the droplet–particle interaction regimes (B = nWek) were obtained. The calculated approximation coefficients make it possible to predict threshold shifts in transition boundaries between the collision regimes for different fuel mixture components. Differences in the characteristics of secondary atomization of droplets interacting with particles were established. Guidelines were provided on applying the research findings to the development of technologies of composite liquid fuel droplet generation in combustion chambers with the separate injection of liquid and solid components, as well as technologies of secondary atomization of fuel droplets producing fine aerosol.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3