Small deformation theory for two leaky dielectric drops in a uniform electric field

Author:

Zabarankin Michael1ORCID

Affiliation:

1. Department of Mathematical Sciences, Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ 07030, USA

Abstract

A small deformation theory for two non-identical spherical drops freely suspended in an ambient fluid and subjected to a uniform electric field is presented. The three phases are assumed to be leaky dielectric (slightly conducting) viscous incompressible fluids and the nonlinear effects of inertia and surface charge convection are neglected. The deformed shapes of the drops are linearized with respect to the electric capillary number that characterizes the balance between the electric stress and the surface tension. When the two drops are sufficiently far apart, their deformed shapes are predicted by Taylor’s small deformation theory—depending on Taylor’s discriminating function, the drops may become prolate, oblate or remain spherical. When the two drops get closer to each other, in addition to becoming prolate/oblate, they start translating and developing an egg shape. (Since there is no net charge, the centre of mass of the two drops remains stationary.) The extent of each of these ‘modes’ of deformation depends on the distance between the drops’ centres and on drop-to-ambient fluid ratios of electric conductivities, dielectric constants and viscosities. The predictions of the small deformation theory for two drops perfectly agree with the existing results of two-drop dynamics simulation based on a boundary-integral equation approach. Moreover, while previous works observed only three types of behaviour for two identical drops—the drops may either become prolate or oblate and move towards each other or become prolate and move away from each other—the small deformation theory predicts that non-identical drops may, in fact, become oblate and move away from each other when the drop-to-ambient fluid conductivity ratios are reciprocal and the drop-to-ambient fluid viscosity ratios are sufficiently large. The presented theory also readily yields an analytical insight into the interplay among different modes of drop deformation and can be used to guide the selection of the phases’ electromechanical properties for two-drop dynamics simulations.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3