Axisymmetric deformation and stability of a viscous drop in a steady electric field

Author:

LAC ETIENNE,HOMSY G. M.

Abstract

We consider a neutrally buoyant and initially uncharged drop in a second liquid subjected to a uniform electric field. Both liquids are taken to be leaky dielectrics. The jump in electrical properties creates an electric stress balanced by hydrodynamic and capillary stresses. Assuming creeping flow conditions and axisymmetry of the problem, the electric and flow fields are solved numerically withboundary integral techniques. The system is characterized by the physical property ratios R (resistivities), Q (permitivities) and λ (dynamic viscosities). Depending on these parameters, the drop deforms into a prolate or an oblate spheroid. The relative importance of the electric stress and of the drop/medium interfacial tension is measured by the dimensionless electric capillary number, Cae. For λ = 1, we present a survey of the various behaviours obtained for a wide range of R and Q. We delineate regions in the (R,Q)-plane in which the drop either attains a steady shape under any field strength or reaches a fold-point instability past a critical Cae. We identify the latter with linear instability of the steady shape to axisymmetric disturbances. Various break-up modes are identified, as well as more complex behaviours such as bifurcations and transition from unstable to stable solution branches. We also show how the viscosity contrast can stabilize the drop or advance break-up in the different situations encountered for λ = 1.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 175 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3