Nonlinear flexure coupling elements for precision control of multibody systems

Author:

Bailey N. Y.ORCID,Lusty C.,Keogh P. S.

Abstract

Conventional multibody systems used in robotics and automated machinery contain bearing components that exhibit complex and uncertain tribological characteristics. These limit fundamentally the precision of the automated motion and also cause wear. Replacing traditional bearing joints with flexure couplings eliminates these tribological effects, together with wear, reducing necessary system maintenance and offering a potential for increased motion precision. A flexure-coupled multibody system is considered and a novel general solution technique is presented. Derivation of a large deflection flexure coupling model is provided and subsequently validated using an experimental facility. A focused study of a unique double-flexure-coupling rigid body system is given; the formulated nonlinear mathematical model can be used for feedforward control. Equivalent control is also applied to a corresponding system with traditional bearing joints. The feasibility of replacing bearing joints by flexure couplings is demonstrated in terms of accurate large displacement control and reduction of high-frequency disturbances.

Funder

EPSRC

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Reference29 articles.

1. A miniaturized, high frequency mechanical scanner for high speed atomic force microscope using suspension on dynamically determined points

2. Components for high speed atomic force microscopy;Fantner GE;Rev. Sci. Instrum.,2006

3. A millimeter-range flexure-based nano-positioning stage using a self-guided displacement amplification mechanism

4. Post-contact, in-hand object motion compensation with adaptive hands;Liarokapis MV;IEEE Trans. Autom. Sci. Eng.,2016

5. A compliant, underactuated hand for robust manipulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3