Symmetric rearrangement of groundwater-fed streams

Author:

Yi Robert1ORCID,Cohen Yossi1ORCID,Devauchelle Olivier2,Gibbins Goodwin1,Seybold Hansjörg1,Rothman Daniel H.1

Affiliation:

1. Lorenz Center, Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA

2. Institut de Physique du Globe, 75252 Paris Cedex 05, France

Abstract

Streams shape landscapes through headward growth and lateral migration. When these streams are primarily fed by groundwater, recent work suggests that their tips advance to maximize the symmetry of the local Laplacian field associated with groundwater flow. We explore the extent to which such forcing is responsible for the lateral migration of streams by studying two features of groundwater-fed streams in Bristol, Florida: their confluence angle near junctions and their curvature. First, we find that, while streams asymptotically form a 72° angle near their tips, they simultaneously exhibit a wide 120° confluence angle within approximately 10 m of their junctions. We show that this wide angle maximizes the symmetry of the groundwater field near the junction. Second, we argue that streams migrate laterally within valleys and present a new spectral analysis method to relate planform curvature to the surrounding groundwater field. Our results suggest that streams migrate laterally in response to fluxes from the surrounding groundwater table, providing evidence of a new mechanism that complements Laplacian growth at their tips.

Funder

Basic Energy Sciences

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Through history to growth dynamics: deciphering the evolution of spatial networks;Scientific Reports;2022-11-27

2. Groundwater erosion of coastal gullies along the Canterbury coast (New Zealand): a rapid and episodic process controlled by rainfall intensity and substrate variability;Earth Surface Dynamics;2021-01-08

3. Geodesic Loewner paths with varying boundary conditions;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2020-10

4. Shapes of river networks;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2018-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3