Dynamic Reorganization of River Basins

Author:

Willett Sean D.1,McCoy Scott W.12,Perron J. Taylor2,Goren Liran1,Chen Chia-Yu1

Affiliation:

1. Geological Institute, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland.

2. Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

Abstract

Introduction River networks, the backbone of most landscapes on Earth, collect and transport water, sediment, organic matter, and nutrients from upland mountain regions to the oceans. Dynamic aspects of these networks include channels that shift laterally or expand upstream, ridges that migrate across Earth’s surface, and river capture events whereby flow from one branch of the network is rerouted in a new direction. These processes result in a constantly changing map of the network with implications for mass transport and the geographic connectivity between species or ecosystems. Ultimately, this dynamic system strives to establish equilibrium between tectonic uplift and river erosion. Determining whether or not a river network is in equilibrium, and, if not, what changes are required to bring it to equilibrium, will help us understand the processes underlying landscape evolution and the implications for river ecosystems. Methods We developed the use of a proxy, referred to as χ, for steady-state river channel elevation. This proxy is based on the current geometry of the river network and provides a snapshot of the dynamic state of river basins. Geometric equilibrium in planform requires that a network map of χ exhibit equal values across all water divides (the ridges separating river basins). Disequilibrium river networks adjust their drainage area through divide migration (geometric change) or river capture (topologic change) until this condition is met. We constructed a numerical model to demonstrate that this is a fundamental characteristic of a stable river network. We applied this principle to natural landscapes using digital elevation models to calculate χ for three, very different, systems: the Loess Plateau in China, the eastern Central Range of Taiwan, and the southeastern United States. Results The Loess Plateau is close to geometric equilibrium, with χ exhibiting nearly equal values across water divides. By contrast, the young and tectonically active Taiwan mountain belt is not in equilibrium, with numerous examples of actively migrating water divides and river network reorganization. The southeastern United States also appears to be far from equilibrium, with the Blue Ridge escarpment migrating to the northwest and the coastal plain rivers reorganizing in response to this change in boundary geometry. Major reorganization events, such as the capture of the headwaters of the Apalachicola River by the Savannah River, are readily identifiable in our maps. Discussion Disequilibrium conditions in a river network imply greater variation of weathering, soil production, and erosion rates. Disequilibrium also implies more frequent river capture with implications for exchange of aquatic species and genetic diversification. Transient conditions in river basins are often interpreted in terms of tectonic perturbation, but our results show that river basin reorganization can occur even in tectonically quiescent regions such as the southeastern United States.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3